Yoshikane Iwatsubo¹, Tomohiro Suzuki¹² and Naohiro Naruhashi¹: Polyploidy of Persicaria japonica (Polygonaceae) in Toyama Prefecture, central Japan

¹Department of Biology, Faculty of Science, Toyama University, Gofuku 3190, Toyama 930–8555, Japan; ²Present address: Matuhodo 298, Asahi-machi, Nishimurayama-gun, Yamagata 990–1561, Japan

Persicaria japonica (C.F.W. Meissn.) H. Gross, a perennial herbaceous plant in the Polygonaceae, is distributed in Japan, China, and the southern part of the Korea Peninsula (Kitagawa 1982). In Japan, this species is growing in vast areas from Ryukyu to Hokkaido (Kitagawa 1982; Ohwi and Kitagawa 1983). The first cytological study of this species by Sugiura (1928) reported 2n=44 chromosomes, thereafter, the distinct number of chromosome, 2n=40 chromosomes was found by Doida (1960 a,b, 1962). The two different chromosome counts reported previously suggest that this species may have two kinds of the basic chromosome numbers, i.e. x=10 and 11. In order to clear the conflict between these findings, the authors studied the chromosome number of P. japonica widely collected in Toyama Prefecture situated on the Japan Sea side of central Honshu, Japan.

Materials and methods
A total of 73 individuals of P. japonica collected from 40 sites in Toyama Prefecture, were used to observe the chromosomes (Table 1). The plants were grown in plastic pots at the experimental garden of Toyama University. The actively growing root tips were pretreated in a 2m M 8-hydroxyquinoline aqueous solution for

Table 1. Chromosome numbers, collection localities and number of individuals examined (in parentheses) of Persicaria japonica in Toyama Prefecture

<table>
<thead>
<tr>
<th>Chromosome number</th>
<th>Collection locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>2n=40</td>
<td>Nakaniikawa-gun: Banbajima, Kamiichi-machi, (1). Toyama City: Gofuku, (1); Komami, (1). Imizu-gun: Nakaoida, Kosugi-machi, (1).</td>
</tr>
<tr>
<td>2n=49</td>
<td>Toyama City: Gofuku, (1).</td>
</tr>
<tr>
<td>2n=50</td>
<td>Shimoniikawa-gun: Miyazaki, Asahi-machi, (3). Toyama City: Inarimotomachi, (1); Yoko kogoshi, (1); Komami, (2); Gofuku, (6); Takada, (1); Teramachi, (5); Mizuhashi-shinbo, (1); Mizuhashi-machibukuro, (1); Mizuhashi-tsujigado, (1); Kusajima, (1); Chayamachi, (1); Hatanaka, (3); Hyakuzuka, (1); Hamakurosaki, (1); Minatoirifunecho, (1); Hiyodori-jima, (4). Nei-gun: Yasuda, Fuchu-machi, (2); Sasa kura, Fuchu-machi, (1); Kamiisawa, Fuchu-machi, (1); Fukuro, Fuchu-machi, (1); Tomosaka, Fuchu-machi, (1); Igu ridani, Yatsu -machi, (1); Ida, Yatsu-machi, (1). Imizu-gun: Gobuichi, Kosugi-machi, (1); Jyodoji, Kosugi-machi, (1); Nakaoida, Kosugi-machi, (1); Kitano, Ooshima-machi, (3); Biwakubi, Daimon-machi, (6). Shiminato City: Bando, (1). Takaoka City: Iwatsubo, (1); Yotsukaichi, (1); Nakada, (1); Donohashi, (1). Himi City: Miyada, (1); Horita, (1). Higashitonami-gun: Onogami, Shou gawa-machi, (2). Oyabe City: Ishizaka, (1); Hirata, (1).</td>
</tr>
</tbody>
</table>
1 hr at 25°C and subsequently kept for 15 hr at 6°C. They were fixed in a mixture of glacial acetic acid and absolute ethyl alcohol (1:3) for 1 hr, and then soaked in 1 N HCl for a few hours. After being macerated in 1 N HCl at 60°C for about 10 min, they were immersed in tap water. The meristems of root tips were stained in a drop of 1.5% lacto-propionic orcein on the slide glass and ordinary squash technique was applied in preparation. Voucher specimens are deposited in the herbarium of Toyama University.

Results and discussion
The sampling sites and chromosome numbers of the materials used in this study are shown in Table 1. Of 73 individuals examined, 4 (5.5%) from four sites had 2n=40, one (1.3%) from a site 2n=49 and 68 (93.2%) from 39 sites 2n=50 chromosomes respectively (Table 1). Figure in parenthesis indicates the frequency. The chromosome count of 2n=40 (Fig. 1 A) is in agreement with the previous reports by Doida (1960 a, b, 1962), while other two counts of 2n=49 and 50 (Fig. 1 B) chromosomes are the first record in this species. Basic chromosome number of the genus Persicaria has remained unknown as yet, though that of Polygonum s.l. including Persicaria is reported to have a serial number of x=8, 9, 10, 11, and 12 (cf. Darlington and Wylie 1955; Doida 1960 a, b, 1962). Among the five kinds of basic chromosome numbers, x=10 seems to be most suitable for the basic chromosome number of P. japonica. For this reason, x=10 is a divisor of the prevailing chromosome numbers, 2n=40 and 50. Consequently the plant with 2n=40 reported by Doida (1960 a, b, 1962) and also found in the present study are considered to be the tetraploid, and those with 2n=50 found in the present study are regarded as the pentaploid. The plants with 2n=44 reported by Sugiura

Fig. 1. Somatic metaphase chromosomes of Persicaria japonica. A, 2n=4x=40; B, 2n=5x=50. Bar = 10 μm.
(1928) and one plant with 2n=49 found in the present study are interpreted as the hypertetraploid and hypopentaploid respectively. These aneuploid plants may have spontaneously occurred in respective mother populations.

In the present study, the majority of *P. japonica* was the pentaploid with 2n=50 chromosomes. At present any kind of cytological mechanisms which can produce a 2n=50 plant immediately from an 2n=40 plant is unknown. The reverse phenomenon in which a 2n=40 plant is produced from an 2n=50 plant is not conceivable, because polyploidization naturally occurs with an irreversible trend from lower to higher levels. In order to make clear the origin of 2n=50 plants of *P. japonica*, a cytological study on the karyotype analysis and meiosis in the two chromosome races, 2n=40 and 50, should be undertaken. In such studies further findings of diploid and additional polyploids in addition to the tetraploids and pentaploids reported here will be expected hereafter.

We thank two anonymous reviewers for their helpful comments on the manuscript, and Dr. M. Hakki for his kindness in correcting the manuscript.

References

(Received March 5, 2003; accepted April 21, 2003)